

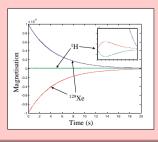
Coherent and incoherent magnetization transfer from hyperpolarised ¹²⁹Xe for enhancing secondary nuclei

Thomas R. Eykyn, Cristina Gabellieri, Neveen Hosny, Martin O. Leach

Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Rd. Sutton, Surrey, SM2 5PT, United Kingdom.

Introduction

The possibility of transferring the polarization from hyperpolarized ¹²⁹Xe to a secondary nucleus such as ¹³C, ¹⁵N, ¹⁹F or ³¹P would open up a wide variety of molecules that may be enhanced. In particular the ability to transfer the polarization to biologically active molecules and to follow the course of their metabolism would offer novel insights into a number processes that may otherwise be hindered by the sensitivity of conventional magnetic resonance.

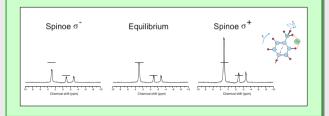

Magnetisation transfer from hyperpolarised ¹²⁹Xe has therefore been the subject of much interest in recent years (1). Polarisation transfer has been achieved to ¹³C through low-field thermal mixing (2). This is achieved by reducing the external field to create a regime where difference in energies between the Zeemann levels of the two spin baths become matched. By analogy high-field RF driven polarisation transfer has been shown to be possible employing Hartmann Hahn cross-polarisation. Alternatively polarisation may also be transferred by cross relaxation between ¹²⁹Xe and ¹H in the solution state.

In this poster we present preliminary experiments for achieving polarisation transfer through cross-relaxation to ¹H in toluene. Differential enhancement factors for the benzene and methyl protons are tentative attributed to differences in local correlation times and suggest the possibility of studying dynamic processes employing hyperpolarised ¹²⁹Xe. We also consider Hartmann Hahn cross polarisation as a potential technique for subsequently transferring the magnetisation from ¹H to ¹³C and ¹⁵N.

SPINOE magnetisation transfer

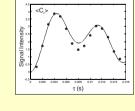
Polarization can be transferred from dissolved laser polarised xenon to surrounding solvent nuclei through cross-relaxation and is a manifestation of the nuclear Overhauser effect.

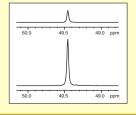
Below is shown a simulation of the decay of the ¹²⁹Xe polarisation and subsequent transient build-up, magnified inset, of the ¹H magnetisation on a neighbouring solvent spin assuming a two-spin system. The sign of the build-up depends on the sign of the hyperpolarisation and leads either to an enhancement or a reduction in the signal intensity with respect to the equilibrium signal.


¹²⁹Xe → ¹H SPINOE enhancement in toluene

The figure (below) shows spectra recorded after SPINOE magnetization transfer from hyperpolarised 129 Xe to 1 H in toluene. The xenon, P ~ 10%, was initially frozen onto the surface of the toluene and then allowed to melt, forming ~ 1:1 mixture. Spectra were recorded with a single scan after 1 min to allow for cross-relaxation to occur.

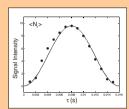
Negative and positive polarization was achieved by reversing the sign of the current in the Helmholtz coil.

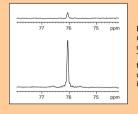

With positively polarized ¹²⁹Xe enhancement factors of 130% and 40% were observed for the benzene ring and methyl group, respectively.


Different enhancement factors arise due to differences in cross relaxation rates. This is due to the difference in mobility of the methyl group compared to the benzene ring.

Coherent magnetization transfer from $^{1}{\rm H} \rightarrow ^{13}{\rm C}$ by cross- polarization

Right shows the magnetisation transfer function from ¹H to ¹³C in ¹³C labelled methanol using Hartmann Hahn cross-polarisation. The pulse sequence employs two matched RF fields applied to the proton and carbon nuclei. Symbols correspond to the experimental signal intensity plotted as a function of the duration (3) of cross polarization. The solid line is a numerical simulation employing MATLAB for an IS₃ spin system.





Left shows the enhanced ¹³C signal in methanol acquired with a cross-polarisation duration of 4 ms and with ¹H decoupling. Top shows the equilibrium signal whereas the bottom is the signal after cross-polarisation. The integrated signal intensity is enhanced by a factor 3.9.

Coherent magnetization transfer from $^{1}\text{H} \rightarrow ^{15}\text{N}$ by cross-polarization

Right shows the magnetisation transfer function from ${}^1\mathrm{H}$ to ${}^5\mathrm{N}$ in ${}^{15}\mathrm{N}$ labelled urea using Hartmann Hahn cross-polarisation. The pulse sequence employs two matched RF fields applied to the proton and nitrogen nuclei. Symbols correspond to the experimental signal intensity plotted as a function of the duration (3) of cross polarization. The solid line is a numerical simulation employing MATLAB for an IS_2 spin system.

Left shows the enhanced ¹⁵N signal in urea acquired with a cross-polarisation duration of 8 ms and with ¹H decoupling. Top shows the equilibrium signal whereas the bottom is the enhanced signal after cross-polarisation. The integrated signal intensity is amplified by a factor 9.6.

Conclusion

We have demonstrated preliminary results for achieving polarization transfer from hyperpolarised ¹²⁹Xe to ¹H through cross relaxation induced SPINOE. Differential enhancement factors were observed for the different protons in tolluene.

We have also considered the possibility of subsequently transferring the polarisation from ¹H to ¹³C or ¹⁵N employing RF driven Hartmann Hahn transfer.

The next step will be to demonstrate the transfer ¹²⁹Xe to ¹H to ¹³C.

Acknowledgements

This work was supported by the Council for Research Councils Basic Technology Programme grant number GR/S23612/01 and by Cancer Research UK [CUK] grant number C1060/A808.

References

- 1) B. M. Goodson, J. Magn. Reson. 155, 157-216 (2002).
- A. Cherubini, G. S. Payne, M. O. Leach, A. Bifone, Chem. Phys. Lett. 371, 640-644 (2003).
- 3) T. R. Eykyn, D. J. Philip, P. W. Kuchel, J. Chem. Phys. 118, 6997 (2003),