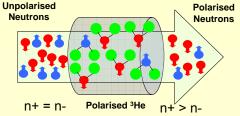
Polarised Neutrons from ³He

S. Boag, S.R. Parnell, C.D. Frost, R.S. Eccleston, D.M. Bebb and P. Phillips

³He Neutron Spin Filters Advantages Disadvantage


- •Simple transmission filter
- •Not strongly wavelength dependent
- •3He Spins easily manipulated

- Disadvantages
 •Depolarisation with
- •Sensitive to magnetic field homogeneities
- Loss in transmission

Critical For Time of Flight

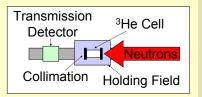
Two particular properties of NSF's critical to TOF instruments are that they cover large detector angles and polarise a broadband energy range of neutrons.

Use ³He Spin dependant absorption cross-section

Methods of Production

Metastability exchange

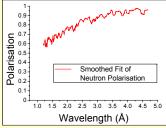
- •P3He~80%
- Polarisation time quick
- Low pressure for optical pumping
- •Requires compressor for cell filling


Spin exchange

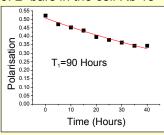
- •P3He~70%
- •High Pressure Cells
- Pressure Fixed
- •Polarisation time up to a day
- Online Pumping

³He Neutron Transmission Tests

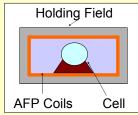
- •Determine P_{He}
- •Monitor with time to find T₁
- •Determine ³He pressure

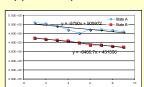


$$P_n(\lambda) = \left(1 - \frac{T_0^2(\lambda)}{T_n^2(\lambda)}\right)^{1/2}$$


$$= \tanh(P_{He}n\sigma_0\lambda l)$$

$$T_0(\lambda) = T_E \exp[-n\sigma_0\lambda l]$$


Neutron transmission experiments have taken place on the modified ROTAX beamline. With a series of 30 minute runs we were able to determine an initial 3 He polarisation of $\approx 65 - 70\%$ and a 3 He pressure of 2 bars in the cell Rb 18 "Billy." By analysing the


polarisation decay over time we calculated a ³He relaxation time (T1) of 90 hours in the ILL "Magic box." All values were produced using the "Poltax" fitting software.

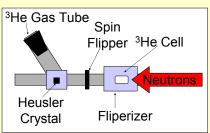
Future Developments

AFP ³He "Fliperizer"

- •Reverse ³He Spin direction using AFP
- Acts as both spin flipper and polarizer

≈1.5% destruction per flip

Tests with lab kit show


•Need more power!!

Flipper Test Station

- •Single λ
- •Use flipping Ratio to find P_n.

$$P_n = \frac{\left(n_+ - n_-\right)}{\left(n_+ + n_-\right)}$$

•Calculate Flipper Efficiency

³He Neutron Spin Filters at TS2

With large detector angles and a broad wavelength band TS2 instruments will benefit from polarisation analysis. ³He NSF's

could provide a viable solution for these instruments and are planned for some Day One instruments. One particular technique in development is X Y Z neutron

polarisation analysis for Time of Flight Instruments, based on the PASTIS concept from the ILL. This will utilise a large angle ³He analyser cell.

