

³He relaxation in uncoated glass cells – orientation, magnetic field and pressure dependence

M.O. Mada¹, Dr. J. R. Owers-Bradley¹, Barnaby Waters¹, Stephen Boag², Steven Parnell²

¹School of Physics and Astronomy, University of Nottingham

²Rutherford Appleton Laboratory (RAL)

Basic Technology Research Programme

Introduction and Method

The aim of these experiments was to investigate the spin relaxation of ³He in glass cells in order to develop a good recipe for producing and storing the HP ³He used in lung MRI. A significant dependence of ³He relaxation times in glass spin-exchange optical pumping cells due to the physical orientation of the cell relative to the applied magnetic field has already been noticed [1][2]. We measured the NMR lineshape and T₁ with different field directions. The orientations were the following: + with Earth's field, - opposing Earth's field.

The system consists of two uncoated glass cells: Storage cell - 1720 Corning; 62% SiO₂, 17% Al₂O₃, 5% B₂O₃, 1% Na₂O, 7% MgO, 8% CaO and Optical Pumping Cell - 7740 Corning Pyrex; 80.6% SiO₂, 4% Na₂O, 13% B₂O₃, 2.3% Al₂O₃, 0.1% K₂O

For measuring the T₁ in the storage cell, the gas was transferred from the optical pumping cell into the storage cell with a low pressure of up to 20 mBar. A NMR tipping pulse was applied every 40 minutes and a FFT was taken. We then plotted the FFT peak heights and fitted with an exponential decay.

Results and Discussion

1. Field orientation dependence

The T₁ relaxation times are shown in Table 1, for the OPC, and Table 3, for the Storage Cell. The evolution of the applied magnetic field orientation during the experiments is shown in Figure 1.

+ orientation During period a T₁ was longest. In period b T₁ was reduced following 2 days at B=0. Starting during period c the T₁ with + orientation started to recover.

 $\underline{}$ orientation T₁ values in this orientation were always lower than with + orientation. T₁ increased during all four *a-d*, and were not affected by time spent at B=0.

Looking at Figure 1 we conclude that the longest T_1 was obtained with + orientation immediately after changing the orientation from – to +. After magnetizing the storage cell the T_1 was dramatically shorter but demagnetizing and heating the cell improved T_2 .

A magnetic field orientation dependence was also observed by RAL group (Table 2)

2. Field strength dependence

The field strength is given by the current through the Helmholtz coils (0.07mT-A^{-1}) . The T_1 was measured at 0.5 A, 1.5 A, 3.37 A or 3.48A and 4.81 A. The measuring field was 3.37 A for + orientation, 3.48 A for - orientation corresponding to 0.02 mT. Table 3 displays the T_1 measured with different field strengths and orientations. The T_1 varies weakly with field strength and the longest T_1 was obtained at the measuring field. Similar results were obtained with - orientation.

3. Pressure dependence

Usually the gas was stored and measured at 20 mBar. We noticed that with + orientation (Figure 2) the FFT shape is much more asymmetric than with – orientation (Figure 3). Also, with both orientations, below 10 mBar the FFT shows distinct features. The FFT shape becomes wider with increasing pressure. For pressures exceeding 160 mBar the peak of the FFT shape is much more rounded. Motional narrowing occurs at low pressures.

4. Temperature and magnetization dependence

Heating the storage cell did not affect the NMFR lineshape as shown in Figure 4 but we did notice that the T₁ is improved after heating the cell. The FFT shape is not affected by the cell magnetization either (Figure 5). It is only the T₁ that is very short after this event. The T₁ returns to its previous values or even longer after degaussing the storage cell.

Conclusions

The cell appears to contain magnetic materials in the wall which can be magnetized and demagnetized to some extent. It is not known whether this is due to Co in the glass or contamination with iron during fabrication.

The glass magnetization at room temperature is time and history dependent

The lineshape confirms the magnetization of the glass cell and shows unexpected structure. Classic motional narrowing is observed when the pressure is reduced and diffusion increases such that gas samples an average B over the cell.

There seems to be an optimal B ~ 20 gauss for long T₁ in this cell.

T₁ is longest when the gas is stored with B parallel to Earth's field immediately after changing the orientation from opposing the Earth's field and after degaussing and/or heating the cell.

References

- 1. R.E. Jacob et al., Phys. Rev. A 69, 021401 (2004)
- 2. R.E. Jacob et al., J. Appl. Phys. 92, 1588 (2002)

Table 1. T1 relaxation time in Optical Pumping Cell

Orientatio	n T1 (min)
+	224ª
-	213ª

Table 3. T1 relaxation time in Storage Cell

Orientation	T1(min) @ 0.5 A	T1(min) @1.5 A	T1(min) @3.37 A	T1(min) @4.81 A
+	82°	432a	430a	165 ^b
		142 ^b	202ь	165°
		153c	297°	
			315 ^d	
Orientation	T1(min) @ 0.5 A	T1(min) @1.5 A	T1(min) @3.48 A	T1(min) @4.81 A
-	45 ^b	189ª	139ª	138ª
		153°	148 ^b	121ª
			161°	156b

- a before B=0 for 60 hours
- b after B=0 for 60 hours
- d after heating and degaussing the storage cell

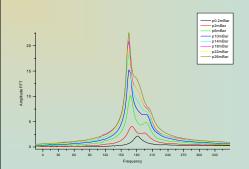


Figure 2. The FFT shapes with + orientation

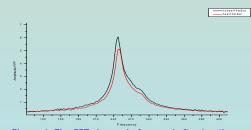


Figure 4. The FFT shapes before and after heating the storage cell

Table 2. T1 relaxation time obtained by RAL group

Cell Name	T ₁ Norm	T ₁ Rev
Sammy	96	58
Cyrill	6	13
Bob(Kate)	20	100
Bertha	12	40

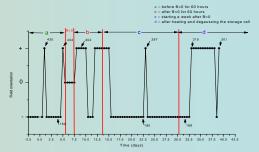


Figure 1. The evolution of the field orientation during the experiments

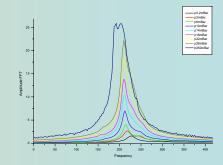


Figure 3. The FFT shapes with - orientation

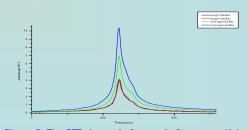


Figure 5. The FFT shapes before and after magnetizing the storage cell