Biological applications of para-hydrogen

Simon Duckett*, Nicholas Wood, Patrick Caldwell, Rathika Kandiah

Department of Chemistry, University of York, York, YO10 5DD, UK.

- The addition of hydrogen to IrCl(CO)(PR₃)₂ has been extensively studied
- Conducting this reaction with para-hydrogen in the presence of a suitable nitrogen-donor molecule yields a new set of complexes
- These complexes can be identified by their enhanced hydride resonances

PR₃ = a triarylphosphine

- The resultant enhanced hydride resonances appear in the high-field region of the ¹H NMR spectrum, at approximately δ -20
- Using pyridine as the nitrogen-donor, the resultant complex has been characterised using ¹H, ¹³C, ¹⁵N, ³¹P and ¹H NOESY methods

Reactions with adenine and purine

- For purine, four pairs of enhanced hydride signals are observed, corresponding to purine coordinating via each of the four N-sites.
- The N_g site is accessed via tautomerisation
- For the major N1 product, the enhancement magnitude allows the acquisition of the coordinated purine ¹⁵N chemical shift in less than 15 minutes at natural abundance
- Analogous results are observed for adenine

This spectrum shows the products arising from the addition of p-H₂ to a sample containing 0.1 mmol of IrCl(CO)(PPh₃)₂ and 0.1 mmol of purine, in d₈-toluene at 305 K. Over a range of temperatures, four separate products are observed.

Reactions with amino acids

NMR spectra showing the polarised hydride resonances seen for the indicated amino acid complexes. The position of the signals for the hydride ligand which is *trans* to chlorine (right) do not change significantly while those for hydrides ligands which are *trans* to an amino acid (left) move substantially and are indicative of the amino acid

Reactions with drugs and their metabolites

- •The drug anastrazole, used in the treatment of breast cancer has been detected by virtue of its binding to IrH2Cl(CO)(PR3)2.
- •A 0.01mM solution of anastrazole in toluene gives rise to the 1H NMR spectrum observed below.

- *Using 15N-labelled substrates, unambiguous characterisation of the corresponding substrate bound metal complexes can be achieved.
- •The 15N gives rise to an extra splitting in the hydride *trans* to the substrate.

Other protocols

Additional increases in sensitivity are possible when using *in-situ* laser irradiation. Approximately 20 times the signal enhancement is observed when using this methodology

1H NMR spectrum of a sample of Ir(CI)(CO)[P-(p-tolyl),.], reacting

Ir(H)2(CI)(CO)[P-(p-tolyl)3]2, (b) strongly enhanced signals for

r(CI)(histidine)[P-(p-tolyI)₃];

with p-H2 in the presence of histidine (a) Limited hydride signals for

Acknowledgements

THE UNIVERSITY of York

